
Computational Statistics manuscript No.
(will be inserted by the editor)

iPlots eXtreme - Next-generation Interactive Graphics

Design and Implementation of Modern Interactive Graphics

Simon Urbanek

Received: date / Accepted: date

Abstract Interactive graphics provide a very important tool that facilitates
the process of exploratory data and model analysis which is a crucial step in
real-world applied statistics. Only a very limited set of software exists that
provides truly interactive graphics for data analysis, partially because it is not
easy to implement. Very often specialized software is created to offer graphics
for a particular problem, but many fundamental plots are omitted since it is
not considered new research. In this paper we discuss a general framework
that allows to create interactive graphics software on a sound foundation that
offers consistent user interface, fast prototyping of new plots and extensibility
to support interactive models.

In addition, we also discuss one implementation of the general framework:
iPlots eXtreme - next-generation interactive graphics for analysis of large data
in R. It provides most fundamental plot types and allows new interactive plots
to be created. The implementation raises interactive graphics performance to
an entirely new level. We will discuss briefly several methods that allowed us to
achieve this goal and illustrate the use of advanced programmability features
in conjunction with R.

Keywords interactive graphics · software · data analysis

1 Introduction

Interactive graphics play an important role in applied statistics, because the
first step in any analysis is to get acquainted with the data in order to be
able to devise adequate subsequent process. Interactive graphics are not lim-
ited to exploratory data analysis but provide also a powerful tool during the

Simon Urbanek
AT&T Labs - Research, Florham Park, NJ 07932
Tel.: +1-973-360-7056
E-mail: urbanek@research.att.com

2

course of choosing and validating models. However, there are not many mod-
ern interactive graphics software packages available that could keep up with
the increasing data sizes. Many of the most widely used packages do not of-
fer fully interactive graphics. One of the reasons is that creating a consistent,
data-oriented interactive graphics is very difficult and most of the existing
software is specialized only on a very specific task.

Our goal was to design a general framework for interactive graphics that is
flexible enough to allow design of any useful interactive graphics yet enforces
the necessary consistency that is important from the user interface point of
view – this aspect is often overlooked. The framework implementation should
then allow fast prototyping of new ideas for interactive plots.

Although general frameworks for static graphics have been proposed[1],
they cannot be easily extended to cover interactive graphics or help with the
design thereof. The main reason is that interactivity has to be introduced at
a very fundamental level in order to be consistent across all graphics. Other
interactive graphics packages such as GGobi[2] can be extended programmat-
ically at data and drawing level using plug-ins, but do not provide an inter-
activity framework for creating new plots. In this paper we describe a general
framework for creating interactive graphics that focuses on the interactivity
but does not impede with the flexibility of graphics. We also describe both
design and implementation of modern, extensible interactive graphics on the
basis of the iPlots project.

In the next section we will focus on what constitutes interactive graph-
ics and the challenges ahead. In section 3 we will discuss the design in all
three main areas - plots, interactions and linking. The subsequent section 4
introduces the main goals of iPlots eXtreme and highlights implementation
details with respect to those goals. It is followed by a section 5 illustrating the
use of iPlots eXtreme on examples in R[3]. Finally, we summarize the main
points in section 6.

2 Interactive Graphics

Interactive graphics and statistical plots that allow direct interaction of the
user with the plot. The most basic functionality that must be supported by in-
teractive statistical graphics are selection (highlighting), queries, zooming,
direct change of parameters and multiple views[4]. The basic concept
underlying selection and highlighting is linking, the most basic requirement
for all interactions and ensures that any changes of state (e.g., selection of
points) are propagated to all components (the same points are highlighted
in all plots). Queries allow us to enrich plots with information without the
limitations and clutter associated with static labels. Zooming (especially with
logical and censored zooming) allows the user to look at very complex plots
without the loss of context. Change of parameters enables the user to interac-
tively influence properties of the plot (such as bin width in histograms) that
allow viewing the data in different light. Multiple views have a similar purpose

3

but the different view can be different yet related plots (such as boxplots and
dotplots). Interactive graphics are a much larger superset of dynamic graph-
ics (such as continuous projection plots or 3D scatterplots), the latter offer
only very limited interactions (in the previous example zooming and change
of projection).

One major challenge of interactive graphics is the necessity for all oper-
ations to be instantaneous. This made it more difficult in the past to create
interactive statistical software. However, recent advances in computing tech-
nology and software make it possible to tackle even large data challenges as
we will see in the iPlots eXtreme implementation section.

Another major challenge is to provide an intuitive and consistent user inter-
face. This aspect is often overlooked and leads to poor adoption of specialized
interactive graphics software. We want this consideration to be part of the
interactive graphics framework such that best practices in user interfaces can
be included in the general implementation such that this consideration does
not need to be explicitly coded again and again when prototyping new ideas
and plots.

Historically, interactive graphics software consisted of stand-alone pro-
grams of fixed functionality. It was not possible to extend existing plots or
to create new ones. With the new, generalized framework we want to take into
consideration the possibility to enhance existing plots by adding new graphical
elements as well as the construction of new types of interactive graphics. This
allows the implementations of this framework to be both consistent yet highly
extendable.

3 Design

All interactive graphics consist of three fundamental parts: plot, interaction
and linking.

The plot is the actual visual representation of the graphic very much like its
static counterpart, but the major difference is that every single part of the plot
must be aware of interactions and linking — it must be designed accordingly.
Attempts to add interactions to existing static plots such as in R have failed
for all but very trivial interactions exactly because of the lack of fundamental
interactive building blocks (thus requiring re-implementation for each view)
and the inability to trace for the graphical representation back to the data.

Interactions are actions of the user such as using mouse or keyboard that
solicit responses from the plot. Some basic interactions are selection (such as
dragging the mouse to create a selection rectangle), query initiation (moving
a mouse over an item while holding a modifier key) or invocation of pop-up
menus.

Linking ensures consistency by propagating changes from one object to all
related objects. The most apparent case of linking is to propagate changes in
the selection set to all plots. There are many other types such as, for exam-
ple, the linking of category permutations in categorical variables (re-ordering

4

3.1 50.8

0

58

scale

statistical object

selectable object

graphical object

Fig. 1 Most basic objects in a plot

bars in a barchart changes the order in all plots with that variable including
mosaic plots, spine plots, etc.) or linking between datasets (such as from gene
expression data to pathways or chromosomes).

The most natural approach for a framework for interactive graphics is to
be object-oriented. Each displayed element is an object with properties and
can respond to interactions. The properties can be of graphical nature such
as position on the screen or its color, but can be arbitrarily complex such as
binning of the underlying data or a statistical model. Objects can react to
direct user interaction such as mouse or keyboard use, but in most cases on
a more general level to selection, linking change or events from other objects.
In the following we will describe the most basic classes of objects in a plot as
the visual representation of the graphic.

3.1 Plots

Each plot is a container that can hold arbitrary many other objects, also
known as components. Each interactive plot is built from basic component
classes that make it easier to create new plot types. The most basic object
types are scales, graphical objects, statistical objects and selectable
objects. The composition of a plot is illustrated on an interactive histogram
in Figure 1.

Scales map from the data space to the graphical coordinates - very much
like in static graphics[1]. They allow to position objects on the surface of the

5

plot relative to each other such that the representation is sensible with respect
to the displayed data. For example in a histogram of a variable V one scale
maps from the data space of the displayed variable V directly to the x-axis
of the graphical coordinates. In this case the scale is simply a linear function
mapping elements of V into real values representing the horizontal position on
the screen. Since the scale depends directly on the variable V , we can create a
link between the two. The other scale in a histogram maps counts in the bins
to the graphical y-axis position on the screen. This scale is indirect (virtual)
since it does not depend directly on the variable V but only on the counts in
the bins. Scales are not necessarily linear – for example discrete scales map
ordinal categories to their positions on the screen which can be permuted and
the categories can be spread equidistantly or according to their size.

Graphical objects are the most basic objects that are displayed on the
screen. They do not have any associated high-level interactions and do not
depend on the data directly. They can, however, have access to scales such
that graphical object behave reasonably to changes in scale such as zooming.
In our histogram example we have a simple horizontal green line which will
appear at the right place even if we rescale the histogram, but it will not react
to selection or changes in the data.

Statistical objects are objects that can be traced back to the original data or
models. This allows them, among other things, to be updated when the under-
lying data or model changes. Density estimation polylines in the histogram are
statistical objects as they are tied to the density estimation ‘model’. Although
statistical objects do not react to selection, they support queries.

Selection objects are special statistical objects that are linked back to the
data and know how to display highlighting and react to selection. In the his-
togram example a bar is a selection object – it knows which cases in the data
it represents (namely those corresponding to that particular bin) and thus
whenever the highlighting changes1 it knows how to fill the rectangle with
highlighting color to denote the currently selected cases in that bin. In addi-
tion, statistical objects are involved when the user performs a selection (e.g., by
dragging a mouse and creating a selection rectangle) – if the object is included
in the selection then the cases it represents are selected automatically.

This means that the interactive selection is handled by the framework:
implementation of selection tools, computation of the resulting highlighting
and a combination of operations and queries. Each selectable object is only
concerned with the graphical representation of the data. Examples of such
objects are rectangles (highlighting is parallel to one of the edges, used in area-
based plots such as barchars, spineplots, mosaic plots, fluctuation diagrams,
...), polylines (used in parallel coordinate plots), points (used in scatterplot,
dotplots, ...) and polygons (used in maps).

Typically, each plot creates scales (including their representation as graph-
ical objects for labeling: axes) and selection objects representing the data it

1 We use highlighting for illustration purposes, but the concept can be generalized for
arbitrary properties associated with the data such as color brushing or weighting – and our
implementation uses this general concept.

6

displays. In the case of a histogram the data is binned and one “selectable
rectangle” is created for each bin. All basic interactions such as selection and
highlighting are then handled entirely by the framework. The parameters of
a histogram are bin width and anchor point. When those change, the plot’s
responsibility is the re-compute the binning and adjust the statistical objects
accordingly.

To illustrate this approach on other plots, parallel coordinate plots create
either one (common) scale for the y axis or p independent scales where p is
the number of variables (coordinates). Then the x scale is a discrete scale
mapping the coordinate permutation to the corresponding graphical positions
of the coordinates. The graphical objects are the lines representing the axes
and statistical polylines each representing one case in the dataset with nodes
computed by applying scales to the data values. Advanced features such as
semi-transparency are implemented by simply adjusting the opacity property
of the objects and are also common to all plots.

The availability of statistical and selection objects is a crucial distinction
between an interactive framework such as iPlots and a post-hoc implementa-
tion of interactive graphics on top of a graphical system. In the latter case
all objects are merely graphical objects and the interaction has to be defined
explicitly for each plot, object and interaction. This fails to ensure consistency
in the system. For example, a selection in one plot could behave differently
from another plot due to the lack of global oversight. Delegation of that re-
sponsibility to the interactive framework guarantees consistency of the user
interface, higher efficiency since the system can be tuned as a whole and much
easier implementation of new plot types.

3.2 Interactions

The goal of the interactive framework is to maintain consistency for the most
important and commonly used interactions such as selection, zoom and queries.
The benefit is twofold – authors of new plots do not need to spend time on
re-implementation of those interactions and at the same time the user will
have the same user experience in all plots and thus find it easier to work with
the system.

As described in the previous section a key to this consistency is the decision
to let the framework handle the graphical representation of the selection and let
the selection objects decide whether they are included in the current operation
or not. In the case of the selection, the details of handling the mouse events
while the user is dragging it to create a selection rectangle are left to the
system. The statistical objects are then queried whether they intersect the
final rectangle. The system itself adjusts the highlighting and notifies any
objects that need to know as we will describe in the following section.

Similarly, a query of a statistical object does not have to rely on the plot to
construct the result. Since the system knows which data points are represented

7

by a given statistical object it can use this information to create a default query
or enhance an existing query.

In addition to interactions handled by the system, each graphical object as
well as the plot itself can be designed to handle its own special interactions.
This retains the flexibility of any object oriented system to be extended in a
very flexible way.

3.3 Highlighting

The concept of highlighting allows to visually distinguish cases of interest from
other cases in the data. Such subset is usually defined using a sequence of se-
lection operations. It can be described as a state associated with each case.
This ‘highlighted’ state is then used by all plots to visualize each case in accor-
dance with its state. Other commonly used complementary states are ghosting
(associated cases are hidden) and brushing (associated cases are represented
as a group, usually using a different color). Highlighting is transient and has
higher precedence than brushing. For example, an area plot will first repre-
sent all highlighted cases regardless of their group using highlighting color and
subsequently only non-highlighted cases will be represented using their corre-
sponding brushed color. The management of the states is performed by the
marker object which updates the states according to selections and notifies
interested parties (usually selectable objects) about any changes to facilitate
linking.

In the same sense that the concept of ‘objects’ is fundamental to the frame-
work, so is also the generalization of the Model-View-Controller[5] concept
used implicitly throughout. In the case of the highlighting the state vector
is the model, views are selectable objects representing the highlighting and
controller is the marker object performing selection and notification. For plots
the data is the model, a collection of statistical objects is the view and the
managing plot class is the controller.

3.4 Linking

Linking is one of the most essential part of an interactive graphics system,
because the benefit of interactive graphics comes from the ability to display
conditional relationships very quickly and in a very intuitive manner. A sub-
group under consideration is immediately highlighted in all other views. In the
most basic interactive graphics linking is used to synchronize the highlighting
between all plots. This can be considered as a general concept of tracking
a property (in this case the highlighted state) by objects interested in the
property (here plots).

The linking is not limited to the highlighting state but can be applied to
any property in the system. Other examples are permutations of categories or
coordinates, scale parameters (c.f. linked scales) and cross-dataset linking. In

8

our framework each interested object registers with the property it wants to
track and receives a notification whenever this property changes. For example,
selectable components register automatically with the marker such that they
are informed whenever the highlighting changes. Discrete scales register with
the permutation property of the categorical variable they represent such that
they can re-arrange the position of object on the screen should the order of
the categories change. The marker of one dataset can register with the marker
of another dataset to keep their highlighting states in sync.

This design allows not only 1:1 linking but also 1:n or even m:n linking
since the link function is defined by the notification response. It could be purely
informative (such as for selectable objects) or change properties of the object
that requests to be notified (as in the case of linking datasets).

One slight complication is the fact the notification could potentially change
the property again, thus triggering a possibly infinite notification loop. A par-
tial solution is to disallow the notification to change the property by which it
was triggered. Nonetheless, an indirect change could still occur by changing
another property which will trigger further notifications that may change the
first property. Although this may sound like an artificially constructed case, it
can occur frequently (albeit not infinitely) when linking between hierarchical
datasets (such selection of a gene triggers a selection of a protein which in
turn may select more genes). Although we detect such loops in our system by
tracking the notification chain, links need to be carefully designed to prevent
situations that may be counter-intuitive for the user.

4 iPlots eXtreme

The framework described above is fairly general and has been first imple-
mented in a slightly limited form as the iPlots [6] package. Statistical objects
were linked to data and only available as selection objects then called plot
primitives. Subsequent evolution of the framework to support visualization of
models was one aspect that has led us to think about a new implementation.

We have taken the opportunity to create an entirely new interactive graph-
ics implementation iPlots eXtreme by focusing on several aspects: perfor-
mance, interactive models and intuitive use.

Performance was the key design goal in order to allow analysis of large
datasets which at the time of writing means millions of data points. The use
of highly-optimized native code (a subset of C++) along with OpenGL allows
for very fast graphics. The iPlots eXtreme framework can also be used in R as
a package. In that case the use of native code allows us to share data directly
with R such that no displayed data needs to be copied. This allows us to
reduce the memory usage dramatically. In addition, we have created our own
high-performance object system for iPlots eXtreme such that we do not have
to rely on any external libraries, including STL to avoid issues associated with
it. R objects fit seamlessly into that object system allowing tighter integration.

9

One further benefit of the high-performance architecture of iPlots eXtreme
is that it can be leveraged by R for its own purposes as well. iPlots eXtreme
includes an implementation of the R graphics device API such that R graphics
can take advantage of the performance offered by this architecture. In addition,
this allows arbitrary combination of iPlots eXtreme interactive plots and R
graphics since both are components in the same framework and thus can be
even mixed in the same window.

Interactive models are statistical models that can be visualized in plots
and modified interactively. For example, it is possible to display predicted
values of a polynomial spline regression model in one variable as a polyline in
a scatterplot. Such visual representation can then be used interactively: the
coefficients of the model can be queried or the degree of the polynomial can
be modified interactively to re-fit the model. The idea is to not only represent
the model visually but also to allow interactions with the model.

Intuitive use is important in interactive graphics, because the range of
interactions is usually large and the user needs to keep in mind the context of
the work. In iPlots there are two levels at which the user interacts with the
software: interactivity in the plots and command line R interface. In iPlots
eXtreme we want to make sure it is intuitive at both levels.

The general framework behind iPlots enforces user interface guidelines such
that the same interactions are possible in all plots where such interaction is
meaningful. It is desirable for the plot controls to be subtle enough to not
distract from the data yet readily available to allow an efficient workflow. In
the following section we highlight some of the ideas used to address the key
goals.

4.1 Layers

Interactive graphics require very fast response, especially during interactive
operations such as selection. The user expects a smooth resizing of the se-
lection rectangle or movement of the brush – the response must be in the
order of dozens of milliseconds. Generally graphics display systems (including
R, Processing[7] or OpenGL) are based on the ink-on-paper concept which
means that objects cannot be simply moved on the screen – only new ‘paint’
can be applied to the screen. In order to move an object, it often means that
the whole plot needs to be redrawn. However, this is a very expensive operation
especially when drawing glyph-based plots for many datapoints.

We address this problem by introducing graphical layers to our system[8].
For performance reasons the layers are sequential in that the layers can be
peeled off from top to bottom. Restoring a given layer also restores all layers
below. The plot can then be separated into logical units that correspond to
layers. The minimal requirement is to have four layers in the following or-
der: background, data objects, highlighting and interaction as illustrated in
Figure 2. Additional custom layers are also allowed.

10

Fig. 2 Interactions layers

When the user drags a selection rectangle the highlighting layer is restored
and the new rectangle is drawn on interaction layer. This means that no data
points or highlighting needs to be drawn since they are already present in the
underlying layers. The cost is therefore reduced to restoring the highlighting
layer and drawing a new selection rectangle.

4.2 High-performance graphics

The major bottleneck of all interactive graphics systems is the actual drawing
on the screen. Fortunately for us a multi-billion dollar industry is concerned
with the exact same problem – the computer games industry. This has made
high-performance graphics processing units (GPU) affordable and commodity
in modern computers. It has also helped to create an international standard
Open Graphics Library (OpenGL)[9] which is now supported practically by
all commonly used computers and operating systems. This has direct impact
on our ability to use interactive graphics for analysis of large data since the
size of interactively displayable datasets has increased by the use of OpenGL
in iPlots eXtreme by orders of magnitude as illustrated in Table 1.

In addition to providing general high-performance graphics, it also provides
a flexible layout system that allows other components to be combined with
plots. One example use of this general framework is the R device component
which allows the placement of R graphics directly in iPlots eXtreme windows
alongside with interactive plots. This enable R to leverage the speed of the
graphics system provided by iPlots eXtreme as well as the direct combination

11

Table 1 Time spent to re-draw a plot in existing interactive graphics packages

GGobi iPlots iPlots eXtreme

scatterplot 1,000,000 points 1,440 ms 990 ms 57 ms
parallel coordinates plot 100,000 cases 1,530 ms 1,710 ms 27 ms

(All tests were performed on Apple Mac Pro 2.66GHz, GeForce GT 120, R 2.10.0,
Mac OS X 10.5.8 with GGobi 2.1.8, iPlots 1.1-3 and iPlots eXtreme 3.0. All plots were
scaled the same net area as used by the actual plot corresponding to 800 by 600 pixels iPlots
eXtreme display. Both iPlots and iPlots eXtreme were performing anti-aliasing (smoother
result but slower rendering) and alpha blending (semi-transparency) – GGobi does not sup-
port either. The real time spent to re-draw a plot was measured.)

of R graphics and iPlots. Although it is not the main focus of iPlots, various
‘widgets’ can be implemented in this framework such as buttons, drop-down
menus or checkboxes, allowing the construction of application-specific user
interfaces.

5 Examples

The iPlots eXtreme system can be used as a stand-alone software, but its
true flexibility is leveraged when integrated with R. The aim is to keep a flat
learning curve for casual users on the one hand, yet provide versatility and
extensibility for advanced users. Basic tasks such as creating a plot should be
familiar to R users as it entails prepending the commonly used plot commands
with an i for ‘interactive’. For example a regular scatterplot would be created
using plot(x, y) and interactive scatterplot is created with iplot(x, y).
Analogously hist becomes ihist, although there are shorter versions for cer-
tain plot types such as ibar for a barchart or ipcp for parallel coordinates
plot.

The difference between R plot commands and iPlots is that all commands
in iPlots return an object that represents the plot and can be used to interact
with it or change its parameters. This allows the co-existence of multiple plots
at the same time and the ability to address a particular plot directly (as
opposed to the concept of a ‘current’ device in R).

Analogously to the naming convention of plots commands, we use the same
principle for commands creating new objects resulting in ilines, iabline,
ipolygon and others. Unlike their non-interactive counterparts those com-
mands return objects that can be modified as well, such as moving a line or
changing the shape or color of a polygon.

In iPlots eXtreme we have shifted entirely to the object oriented paradigm
such that every plot or graphics element is an object that can be operated on.
This allows very terse yet intuitive syntax such as

iplot(x,y) + lm(y~x)

12

to create a scatterplot plot and add a linear model representation to it. Addi-
tional objects such as lines or polygons can be added or removed in a similar
manner.

In addition, we have introduced the concept of virtual attributes which
allow direct access to plot parameters using the $ extraction operator. Each
plot provides a set of properties that can be accessed using names, for example:

> h <- ihist(x) # create an interactive histogram

> h$bin.width # retrieve the current bin width

[1] 0.3272727

> h$bin.width <- 0.4 # set the bin width programmatically

All such properties are “live” which means that interactive changes are
reflected immediately in the values of the property. Assignment of values to
those properties triggers an immediate change in the plot such as change of
the bin width in the above example. Other examples include change of scales
(xlim, ylim) or even properties of graphical objects such as color:

> iplot(x, y)

Scatterplot x vs y

> l <- ilines(lowess(x, y))

> l$color

[1] "#000000"

> l$color = "red"

Virtual attributes also provide a user-friendly facility to offer callback func-
tions. Let’s say we want to add a graphical object to the plot that also depends
on the state of the plot, i.e., we want a function to be called whenever the plot
changes. This is easily done by using the onChange virtual attribute of an
object as the following example of a density estimator illustrates:

h <- ihist(x) # create a histogram

dp <- iPolygon() # create an empty polygon object

on change compute density and adjust the polygon

dp$onChange <- function(pp) {

h <- pp$plot # get the plot object

print(h$bin.width) # print current bin width

d <- density(x, h$bin.width) # compute new density

pp$x <- d$x # update the points accordingly

pp$y <- d$y * length(x) * h$bin.width

}

add(h, dp) # add the polygon to the plot

In a similar manner callback function can be specified for different events
such as highlighting (marker) change or user interactions (keyboard and mouse
events).

Since plot objects reflect all changes immediately, they behave as mutable
objects – similar to environments. This enables general-purpose storage for

13

custom use. To avoid collisions with virtual attributes custom attribute names
should by convention start with a capital letter or a dot.

We have also taken the opportunity to re-design the interface with the
windowing system. iPlots eXtreme are based on a very flexible layout system
that allows multiple components (such as interactive plots, R graphics, user
interface controls) in the same window. All plot commands allow the specifi-
cation of the enclosing container as well as dimensions and resizing behavior.
If not specified, a new window is created to be the container of the plot object
and the plot component will fill out the entire window.

The layout system is based on the bars-and-springs system used in iWidgets[10].
Cross-platform compatibility is guaranteed by the reliance on the established
OpenGL standard and a thin layer that maps system-dependent interactions
with the windowing system to iPlots eXtreme object. Therefore only one fairly
small class needs to be implemented to support any new platform. iPlots eX-
treme currently support Windows, Mac OS X (both with native toolkits) and
unix (using GLUT[11]).

6 Summary

We have described a general framework for implementing interactive graphics
which started as the basis of iPlots, icp and has been refined for iPlots eX-
treme. The object-oriented framework extends the concepts known from static
plots such as scales with objects allowing construction of consistent interactive
graphics. Selectable objects fully support selection, highlighting and brushing.
Statistical objects are directly liked to the data or models and define the be-
havior with respect to user interactions. Graphical objects are programmable,
but not directly aware of data-affecting interactions such as selection or high-
lighting. A basic set of selectable objects (rectangles, points, lines, polygons)
covers most of the commonly used interactive plots and the framework allows
for additional, custom objects. The use of such building blocks guarantees
consistency in the user interface and makes it very easy to build new types of
interactive graphics.

This general framework for interactive graphics has been implemented in
iPlots eXtreme – an infrastructure for high-performance interactive graphics
for the analysis of large data that lifts the scalability of interactive graphics
to a new level. iPlots eXtreme use OpenGL for hardware-accelerated graphics
display, optimized object system for performance and direct access to R object
for tight integration with R where desired. Nonetheless the iPlots eXtreme
system can be also used independently of R for high-performance visualization.

In addition to the focus on performance iPlots eXtreme offer several new
concepts over iPlots: direct access to plot parameters and other objects using
the $ extraction operator, callback functions, simplified syntax by overloading
addition + and subtraction operators -, support for formula plot specifications,
flexible layout system and the ability to act as an R graphics device. iPlots
eXtreme also introduce the ability to represent statistical models interactively.

14

The most recent documentation and implementation is freely available from
http://www.iplots.org/.

References

1. Wilkinson Leland, The Grammar of Graphics, Springer (1999)
2. Swayne Deborah F, Temple Lang Duncan, Buja Andreas, Cook Dianne, GGobi: Evolving

from XGobi into an Extensible Framework for Interactive Data Visualization, Computa-
tional Statistics and Data Analysis, 43, p.423-444 (2003)

3. R Development Core Team, R: A Language and Environment for Statistical Computing,
http://www.R-project.org, R Foundation for Statistical Computing, Vienna, Austria
(2009)

4. Unwin Antony, Requirements for Interactive Graphics Software for Exploratory Data
Analysis, Computational Statistics, 14, p.7–22 (1999)

5. Reenskaug, Trygve : Models - Views - Controllers. Technical note, Xerox PARC, Decem-
ber 1979.
http://heim.ifi.uio.no/~trygver/mvc/index.html

6. Urbanek Simon Theus Martin, iPlots - High Interaction Graphics for R, Proceedings of
the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (2003)

7. Processing language and environment, http://www.processing.org/
8. Wilhelm Adalbert FX, Interactive Statistical Graphics: The Paradigm of Linked Views.

Habilitationsschrift, University of Augsburg (1999)
9. Shreiner, Dave and OpenGL Architecture Review Board, OpenGL reference manual: the

official reference document to OpenGL, version 1.4, Addison-Wesley, Boston (2004)
10. iWidgets - basic user interface widgets for R, R-package, http://rforge.net/iWidgets/
11. GLUT - The OpenGL Utility Toolkit,
http://www.opengl.org/resources/libraries/glut/

http://www.iplots.org/
http://www.R-project.org
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://www.processing.org/
http://rforge.net/iWidgets/
http://www.opengl.org/resources/libraries/glut/

	Introduction
	Interactive Graphics
	Design
	iPlots eXtreme
	Examples
	Summary

